« Up

mathcomp-odd-order 1.14.0 Not compatible 👼

Context

# Packages matching: installed
# Name              # Installed # Synopsis
base-bigarray       base
base-num            base        Num library distributed with the OCaml compiler
base-threads        base
base-unix           base
camlp5              7.14        Preprocessor-pretty-printer of OCaml
conf-findutils      1           Virtual package relying on findutils
conf-perl           2           Virtual package relying on perl
coq                 8.8.1       Formal proof management system
num                 0           The Num library for arbitrary-precision integer and rational arithmetic
ocaml               4.04.2      The OCaml compiler (virtual package)
ocaml-base-compiler 4.04.2      Official 4.04.2 release
ocaml-config        1           OCaml Switch Configuration
ocamlfind           1.9.6       A library manager for OCaml
# opam file:
opam-version: "2.0"
maintainer: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
homepage: "https://math-comp.github.io/math-comp/"
bug-reports: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
dev-repo: "git+https://github.com/math-comp/odd-order"
license: "CeCILL-B"
build: [
  [make "-j" "%{jobs}%"]
]
install: [ make "install" ]
depends: [
  "ocaml"
  "coq-mathcomp-character" { (>= "1.12.0") | (= "dev") }
]
tags: [ "keyword:finite groups" "keyword:Feit Thompson theorem" "keyword:small scale reflection" "keyword:mathematical components" "keyword:odd order theorem" ]
authors: [ "Jeremy Avigad <>" "Andrea Asperti <>" "Stephane Le Roux <>" "Yves Bertot <>" "Laurence Rideau <>" "Enrico Tassi <>" "Ioana Pasca <>" "Georges Gonthier <>" "Sidi Ould Biha <>" "Cyril Cohen <>" "Francois Garillot <>" "Alexey Solovyev <>" "Russell O'Connor <>" "Laurent Théry <>" "Assia Mahboubi <>" ]
synopsis: "The formal proof of the Feit-Thompson theorem"
description: """
The formal proof of the Feit-Thompson theorem.
From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14.
Check Feit_Thompson.
   : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G
From mathcomp Require Import all_ssreflect all_fingroup 
                             all_solvable stripped_odd_order_theorem.
Check stripped_Odd_Order.
   : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T)
         (G : T -> Type) (n : natural),
       group_axioms T mul one inv ->
       group T mul one inv G ->
       finite_of_order T G n -> odd n -> solvable_group T mul one inv G"""
url {
  src: "https://github.com/math-comp/odd-order/archive/mathcomp-odd-order.1.14.0.tar.gz"
  checksum: "sha256=dd65bfae84f69f5ffd0784322b66c537d76d60da246b648b0c901b77b094c8d2"
}

Lint

Command
true
Return code
0

Dry install 🏜️

Dry install with the current Coq version:

Command
opam install -y --show-action coq-mathcomp-odd-order.1.14.0 coq.8.8.1
Return code
5120
Output
[NOTE] Package coq is already installed (current version is 8.8.1).
The following dependencies couldn't be met:
  - coq-mathcomp-odd-order -> coq-mathcomp-character >= dev -> coq-mathcomp-field >= 1.12.0 -> coq-mathcomp-solvable >= 1.12.0 -> coq-mathcomp-algebra >= 1.12.0 -> coq-mathcomp-fingroup >= 1.12.0 -> coq-mathcomp-ssreflect >= 1.12.0 -> coq >= 8.10 -> ocaml >= 4.05.0
      base of this switch (use `--unlock-base' to force)
  - coq-mathcomp-odd-order -> coq-mathcomp-character >= dev -> coq-mathcomp-field >= 1.12.0 -> coq-mathcomp-solvable >= 1.12.0 -> coq-mathcomp-algebra >= 1.12.0 -> coq-mathcomp-fingroup >= 1.12.0 -> coq-mathcomp-ssreflect >= 1.12.0 -> coq >= 8.10 -> coq-core -> ocaml >= 4.09.0
      base of this switch (use `--unlock-base' to force)
No solution found, exiting

Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:

Command
opam remove -y coq; opam install -y --show-action --unlock-base coq-mathcomp-odd-order.1.14.0
Return code
0

Install dependencies

Command
true
Return code
0
Duration
0 s

Install 🚀

Command
true
Return code
0
Duration
0 s

Installation size

No files were installed.

Uninstall 🧹

Command
true
Return code
0
Missing removes
none
Wrong removes
none