ยซ Up

functional-algebra 1.0.2 Not compatible ๐Ÿ‘ผ

Context

# Packages matching: installed
# Name              # Installed # Synopsis
base-bigarray       base
base-threads        base
base-unix           base
conf-findutils      1           Virtual package relying on findutils
conf-gmp            4           Virtual package relying on a GMP lib system installation
coq                 8.13.2      Formal proof management system
num                 1.4         The legacy Num library for arbitrary-precision integer and rational arithmetic
ocaml               4.06.1      The OCaml compiler (virtual package)
ocaml-base-compiler 4.06.1      Official 4.06.1 release
ocaml-config        1           OCaml Switch Configuration
ocamlfind           1.9.5       A library manager for OCaml
zarith              1.12        Implements arithmetic and logical operations over arbitrary-precision integers
# opam file:
opam-version: "2.0"
maintainer: "llee454@gmail.com"
homepage: "https://github.com/llee454/functional-algebra"
dev-repo: "git+https://github.com/llee454/functional-algebra.git"
bug-reports: "https://github.com/llee454/functional-algebra/issues"
authors: ["Larry D. Lee Jr."]
license: "LGPLv3"
build: [
  [make "-j%{jobs}%"]
]
install: [
  [make "install"]
]
remove: ["rm" "-R" "%{lib}%/coq/user-contrib/functional_algebra"]
depends: [
  "ocaml"
  "coq" {>= "8.4" & < "8.13~"}
]
tags: [
  "keyword:algebra"
  "keyword:abstract algebra"
  "category:Miscellaneous/Coq Extensions"
  "date:2018-08-11"
  "logpath:functional-algebra"
]
synopsis:
  "This package provides a Coq formalization of abstract algebra using"
description: """
a functional programming style. The modules contained within the
 package span monoids, groups, rings, and fields and provides both
 axiom definitions for these structures and proofs of foundational
 results. The current package contains over 800 definitions and
 proofs.
This module is unique in that it eschews the tactic-oriented
style of traditional Coq developments. As pointed out by others,
programs written in that style are brittle, hard to read, and
generally inefficient.
While tactic driven development is useful for sketching out proofs,
these disadvantages should dissuade us from publising proofs in
this form.
In this library, I provide a worked example of using Gallina
directly and demonstrate both the feasibility of this approach
and its advantages in terms of clarity, maintainability, and
compile-time efficiency.
In addition, this module includes two expression simplifiers. The
first, defined in monoid_expr.v simplifies monoid expressions. The
second, defined in group_expr.v simplifies group expressions.
These functions allow us to automate many of the steps involved in
proving algebraic theorems directly in Gallina, and represent an
alternative to relying on tactics such as auto, omega, etc.
For more information about this package, please read its Readme
file, which can be found here:
https://github.com/llee454/functional-algebra."""
flags: light-uninstall
url {
  src: "https://github.com/llee454/functional-algebra/archive/1.0.2.tar.gz"
  checksum: "md5=669f85d5dd1aa2fa235e5518432896a1"
}

Lint

Command
true
Return code
0

Dry install ๐Ÿœ๏ธ

Dry install with the current Coq version:

Command
opam install -y --show-action coq-functional-algebra.1.0.2 coq.8.13.2
Return code
5120
Output
[NOTE] Package coq is already installed (current version is 8.13.2).
The following dependencies couldn't be met:
  - coq-functional-algebra -> coq < 8.13~ -> ocaml < 4.06.0
      base of this switch (use `--unlock-base' to force)
Your request can't be satisfied:
  - No available version of coq satisfies the constraints
No solution found, exiting

Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:

Command
opam remove -y coq; opam install -y --show-action --unlock-base coq-functional-algebra.1.0.2
Return code
0

Install dependencies

Command
true
Return code
0
Duration
0 s

Install ๐Ÿš€

Command
true
Return code
0
Duration
0 s

Installation size

No files were installed.

Uninstall ๐Ÿงน

Command
true
Return code
0
Missing removes
none
Wrong removes
none