« Up

zfc 8.10.0 Not compatible

(2021-11-05 09:57:39 UTC)

Context

# Packages matching: installed
# Name                # Installed # Synopsis
base-bigarray         base
base-threads          base
base-unix             base
conf-findutils        1           Virtual package relying on findutils
conf-gmp              3           Virtual package relying on a GMP lib system installation
coq                   8.13.2      Formal proof management system
num                   1.4         The legacy Num library for arbitrary-precision integer and rational arithmetic
ocaml                 4.12.0      The OCaml compiler (virtual package)
ocaml-base-compiler   4.12.0      Official release 4.12.0
ocaml-config          2           OCaml Switch Configuration
ocaml-options-vanilla 1           Ensure that OCaml is compiled with no special options enabled
ocamlfind             1.9.1       A library manager for OCaml
zarith                1.12        Implements arithmetic and logical operations over arbitrary-precision integers
# opam file:
opam-version: "2.0"
maintainer: "Hugo.Herbelin@inria.fr"
homepage: "https://github.com/coq-contribs/zfc"
license: "LGPL 2.1"
build: [make "-j%{jobs}%"]
install: [make "install"]
remove: ["rm" "-R" "%{lib}%/coq/user-contrib/ZFC"]
depends: [
  "ocaml"
  "coq" {>= "8.10" & < "8.11~"}
]
tags: [
  "keyword: set theory"
  "keyword: Zermelo-Fraenkel"
  "keyword: Calculus of Inductive Constructions"
  "category: Mathematics/Logic/Set theory"
]
authors: [
  "Benjamin Werner"
]
bug-reports: "https://github.com/coq-contribs/zfc/issues"
dev-repo: "git+https://github.com/coq-contribs/zfc.git"
synopsis: "An encoding of Zermelo-Fraenkel Set Theory in Coq"
description: """
  The encoding of Zermelo-Fraenkel Set Theory is largely inspired by
Peter Aczel's work dating back to the eighties. A type Ens is defined,
which represents sets. Two predicates IN and EQ stand for membership
and extensional equality between sets. The axioms of ZFC are then
proved and thus appear as theorems in the development.
  A main motivation for this work is the comparison of the respective
expressive power of Coq and ZFC.
  A non-computational type-theoretical axiom of choice is necessary to
prove the replacement schemata and the set-theoretical AC.
  The main difference between this work and Peter Aczel's is that
propositions are defined on the impredicative level Prop. Since the
definition of Ens is, however, still unchanged, I also added most of
Peter Aczel's definition. The main advantage of Aczel's approach is a
more constructive vision of the existential quantifier (which gives
the set-theoretical axiom of choice for free)."""
flags: light-uninstall
url {
  src: "https://github.com/coq-contribs/zfc/archive/v8.10.0.tar.gz"
  checksum: "md5=fe35c7303b35f0295366925cd260fd2c"
}

Lint

Command
true
Return code
0

Dry install

Dry install with the current Coq version:

Command
opam install -y --show-action coq-zfc.8.10.0 coq.8.13.2
Return code
5120
Output
[NOTE] Package coq is already installed (current version is 8.13.2).
The following dependencies couldn't be met:
  - coq-zfc -> coq < 8.11~ -> ocaml < 4.10
      base of this switch (use `--unlock-base' to force)
No solution found, exiting

Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:

Command
opam remove -y coq; opam install -y --show-action --unlock-base coq-zfc.8.10.0
Return code
0

Install dependencies

Command
true
Return code
0
Duration
0 s

Install

Command
true
Return code
0
Duration
0 s

Installation size

No files were installed.

Uninstall

Command
true
Return code
0
Missing removes
none
Wrong removes
none