« Up

mathcomp-odd-order 1.12.0 Not compatible 👼

Context

# Packages matching: installed
# Name                # Installed # Synopsis
base-bigarray         base
base-threads          base
base-unix             base
conf-findutils        1           Virtual package relying on findutils
conf-gmp              4           Virtual package relying on a GMP lib system installation
coq                   dev         Formal proof management system
dune                  3.1.1       Fast, portable, and opinionated build system
ocaml                 4.12.1      The OCaml compiler (virtual package)
ocaml-base-compiler   4.12.1      Official release 4.12.1
ocaml-config          2           OCaml Switch Configuration
ocaml-options-vanilla 1           Ensure that OCaml is compiled with no special options enabled
ocamlfind             1.9.3       A library manager for OCaml
zarith                1.12        Implements arithmetic and logical operations over arbitrary-precision integers
# opam file:
opam-version: "2.0"
maintainer: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
homepage: "http://math-comp.github.io/math-comp/"
bug-reports: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
dev-repo: "git+https://github.com/math-comp/odd-order"
license: "CeCILL-B"
build: [ 
     [make "-j" "%{jobs}%"]
]
install: [ make "install" ]
depends: [
  "coq-mathcomp-character" {>= "1.11.0" & < "1.13"}
  "coq-mathcomp-field"  {>= "1.11.0" & < "1.13"}
  "coq-mathcomp-fingroup" {>= "1.11.0" & < "1.13"}
  "coq-mathcomp-solvable" {>= "1.11.0" & < "1.13"}
  "coq-mathcomp-ssreflect" {>= "1.11.0" & < "1.13"}
]
tags: [ "keyword:finite groups" "keyword:Feit Thompson theorem" "keyword:small scale reflection" "keyword:mathematical components" "keyword:odd order theorem" ]
authors: [ "Jeremy Avigad <>" "Andrea Asperti <>" "Stephane Le Roux <>" "Yves Bertot <>" "Laurence Rideau <>" "Enrico Tassi <>" "Ioana Pasca <>" "Georges Gonthier <>" "Sidi Ould Biha <>" "Cyril Cohen <>" "Francois Garillot <>" "Alexey Solovyev <>" "Russell O'Connor <>" "Laurent Théry <>" "Assia Mahboubi <>" ]
synopsis: "The formal proof of the Feit-Thompson theorem"
description: """
The formal proof of the Feit-Thompson theorem.
From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14.
Check Feit_Thompson.
   : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G
From mathcomp Require Import all_ssreflect all_fingroup 
                             all_solvable stripped_odd_order_theorem.
Check stripped_Odd_Order.
   : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T)
         (G : T -> Type) (n : natural),
       group_axioms T mul one inv ->
       group T mul one inv G ->
       finite_of_order T G n -> odd n -> solvable_group T mul one inv G"""
url {
  src:
    "https://github.com/math-comp/odd-order/archive/mathcomp-odd-order.1.12.0.tar.gz"
  checksum: "sha256=8f2e56472084680c24fd82e28e2e205c6bb025e41c29e76161dbb3e0fd4883ac"
}

Lint

Command
true
Return code
0

Dry install 🏜️

Dry install with the current Coq version:

Command
opam install -y --show-action coq-mathcomp-odd-order.1.12.0 coq.dev
Return code
5120
Output
[NOTE] Package coq is already installed (current version is dev).
The following dependencies couldn't be met:
  - coq-mathcomp-odd-order -> coq-mathcomp-ssreflect (>= 1.11.0 & < 1.13) -> coq < 8.15~ -> ocaml < 4.12
      base of this switch (use `--unlock-base' to force)
Your request can't be satisfied:
  - No available version of coq satisfies the constraints
  - No available version of coq-mathcomp-ssreflect satisfies the constraints
No solution found, exiting

Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:

Command
opam remove -y coq; opam install -y --show-action --unlock-base coq-mathcomp-odd-order.1.12.0
Return code
0

Install dependencies

Command
true
Return code
0
Duration
0 s

Install 🚀

Command
true
Return code
0
Duration
0 s

Installation size

No files were installed.

Uninstall 🧹

Command
true
Return code
0
Missing removes
none
Wrong removes
none