« Up

mathcomp-odd-order 1.14.0 Not compatible 👼

Context

# Packages matching: installed
# Name                # Installed # Synopsis
base-bigarray         base
base-threads          base
base-unix             base
conf-gmp              4           Virtual package relying on a GMP lib system installation
coq                   8.17.0      The Coq Proof Assistant
coq-core              8.17.0      The Coq Proof Assistant -- Core Binaries and Tools
coq-stdlib            8.17.0      The Coq Proof Assistant -- Standard Library
coqide-server         8.17.0      The Coq Proof Assistant, XML protocol server
dune                  3.13.0      Fast, portable, and opinionated build system
ocaml                 4.14.0      The OCaml compiler (virtual package)
ocaml-base-compiler   4.14.0      Official release 4.14.0
ocaml-config          2           OCaml Switch Configuration
ocaml-options-vanilla 1           Ensure that OCaml is compiled with no special options enabled
ocamlfind             1.9.6       A library manager for OCaml
zarith                1.13        Implements arithmetic and logical operations over arbitrary-precision integers
# opam file:
opam-version: "2.0"
maintainer: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
homepage: "https://math-comp.github.io/math-comp/"
bug-reports: "Mathematical Components <mathcomp-dev@sympa.inria.fr>"
dev-repo: "git+https://github.com/math-comp/odd-order"
license: "CeCILL-B"
build: [
  [make "-j" "%{jobs}%"]
]
install: [ make "install" ]
depends: [
  "ocaml"
  "coq-mathcomp-character" {>= "1.12.0" & < "1.16~"}
]
tags: [ "keyword:finite groups" "keyword:Feit Thompson theorem" "keyword:small scale reflection" "keyword:mathematical components" "keyword:odd order theorem" ]
authors: [ "Jeremy Avigad <>" "Andrea Asperti <>" "Stephane Le Roux <>" "Yves Bertot <>" "Laurence Rideau <>" "Enrico Tassi <>" "Ioana Pasca <>" "Georges Gonthier <>" "Sidi Ould Biha <>" "Cyril Cohen <>" "Francois Garillot <>" "Alexey Solovyev <>" "Russell O'Connor <>" "Laurent Théry <>" "Assia Mahboubi <>" ]
synopsis: "The formal proof of the Feit-Thompson theorem"
description: """
The formal proof of the Feit-Thompson theorem.
From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14.
Check Feit_Thompson.
   : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G
From mathcomp Require Import all_ssreflect all_fingroup 
                             all_solvable stripped_odd_order_theorem.
Check stripped_Odd_Order.
   : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T)
         (G : T -> Type) (n : natural),
       group_axioms T mul one inv ->
       group T mul one inv G ->
       finite_of_order T G n -> odd n -> solvable_group T mul one inv G"""
url {
  src: "https://github.com/math-comp/odd-order/archive/mathcomp-odd-order.1.14.0.tar.gz"
  checksum: "sha256=dd65bfae84f69f5ffd0784322b66c537d76d60da246b648b0c901b77b094c8d2"
}

Lint

Command
true
Return code
0

Dry install 🏜️

Dry install with the current Coq version:

Command
opam install -y --show-action coq-mathcomp-odd-order.1.14.0 coq.8.17.0
Return code
5120
Output
[NOTE] Package coq is already installed (current version is 8.17.0).
The following dependencies couldn't be met:
  - coq-mathcomp-odd-order -> coq-mathcomp-character < 1.16~ -> coq-mathcomp-field < 1.16.0 -> coq-mathcomp-solvable < 1.16.0 -> coq-mathcomp-algebra < 1.16.0 -> coq-mathcomp-fingroup < 1.16.0 -> coq-mathcomp-ssreflect < 1.16.0 -> coq < 8.17~ -> ocaml < 4.12
      base of this switch (use `--unlock-base' to force)
Your request can't be satisfied:
  - No available version of coq satisfies the constraints
No solution found, exiting

Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:

Command
opam remove -y coq; opam install -y --show-action --unlock-base coq-mathcomp-odd-order.1.14.0
Return code
0

Install dependencies

Command
true
Return code
0
Duration
0 s

Install 🚀

Command
true
Return code
0
Duration
0 s

Installation size

No files were installed.

Uninstall 🧹

Command
true
Return code
0
Missing removes
none
Wrong removes
none