# Packages matching: installed # Name # Installed # Synopsis base-bigarray base base-domains base base-nnp base Naked pointers prohibited in the OCaml heap base-threads base base-unix base conf-gmp 4 Virtual package relying on a GMP lib system installation coq dev The Coq Proof Assistant coq-core dev The Coq Proof Assistant -- Core Binaries and Tools coq-stdlib dev The Coq Proof Assistant -- Standard Library coqide-server dev The Coq Proof Assistant, XML protocol server dune 3.13.0 Fast, portable, and opinionated build system ocaml 5.1.1 The OCaml compiler (virtual package) ocaml-base-compiler 5.1.1 Official release 5.1.1 ocaml-config 3 OCaml Switch Configuration ocaml-options-vanilla 1 Ensure that OCaml is compiled with no special options enabled ocamlfind 1.9.6 A library manager for OCaml zarith 1.13 Implements arithmetic and logical operations over arbitrary-precision integers # opam file: opam-version: "2.0" maintainer: "Mathematical Components <mathcomp-dev@sympa.inria.fr>" homepage: "http://math-comp.github.io/math-comp/" bug-reports: "Mathematical Components <mathcomp-dev@sympa.inria.fr>" dev-repo: "git+https://github.com/math-comp/odd-order" license: "CeCILL-B" build: [ [make "-j" "%{jobs}%"] ] install: [ make "install" ] depends: [ "ocaml" "coq-mathcomp-algebra" {= "1.10.0"} "coq-mathcomp-character" {= "1.10.0"} "coq-mathcomp-field" {= "1.10.0"} "coq-mathcomp-fingroup" {= "1.10.0"} "coq-mathcomp-solvable" {= "1.10.0"} "coq-mathcomp-ssreflect" {= "1.10.0"} ] tags: [ "keyword:finite groups" "keyword:Feit Thompson theorem" "keyword:small scale reflection" "keyword:mathematical components" "keyword:odd order theorem" ] authors: [ "Jeremy Avigad <>" "Andrea Asperti <>" "Stephane Le Roux <>" "Yves Bertot <>" "Laurence Rideau <>" "Enrico Tassi <>" "Ioana Pasca <>" "Georges Gonthier <>" "Sidi Ould Biha <>" "Cyril Cohen <>" "Francois Garillot <>" "Alexey Solovyev <>" "Russell O'Connor <>" "Laurent Théry <>" "Assia Mahboubi <>" ] synopsis: "The formal proof of the Feit-Thompson theorem" description: """ The formal proof of the Feit-Thompson theorem. From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14. Check Feit_Thompson. : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G From mathcomp Require Import all_ssreflect all_fingroup all_solvable stripped_odd_order_theorem. Check stripped_Odd_Order. : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T) (G : T -> Type) (n : natural), group_axioms T mul one inv -> group T mul one inv G -> finite_of_order T G n -> odd n -> solvable_group T mul one inv G""" url { src: "https://github.com/math-comp/odd-order/archive/mathcomp-odd-order.1.10.0.tar.gz" checksum: "sha256=c3ddd9f3c3882985cf01afbc72866f551cbba314f45478a248b7aec88bf8f533" }
true
Dry install with the current Coq version:
opam install -y --show-action coq-mathcomp-odd-order.1.10.0 coq.dev
[NOTE] Package coq is already installed (current version is dev). [ERROR] Package conflict! * No agreement on the version of coq: - coq >= dev - coq-mathcomp-odd-order = 1.10.0 -> coq-mathcomp-ssreflect = 1.10.0 -> coq < 8.12~ * No agreement on the version of ocaml: - (invariant) -> ocaml-base-compiler >= 5.1.1 -> ocaml = 5.1.1 - coq-mathcomp-odd-order = 1.10.0 -> coq-mathcomp-ssreflect = 1.10.0 -> coq < 8.12~ -> ocaml < 4.05.0 You can temporarily relax the switch invariant with `--update-invariant' * No agreement on the version of ocaml-base-compiler: - (invariant) -> ocaml-base-compiler >= 5.1.1 - coq-mathcomp-odd-order = 1.10.0 -> coq-mathcomp-ssreflect = 1.10.0 -> coq < 8.12~ -> ocaml < 4.05.0 -> ocaml-base-compiler < 3.07+1 * Missing dependency: - coq-mathcomp-odd-order = 1.10.0 -> coq-mathcomp-ssreflect = 1.10.0 -> coq < 8.12~ -> ocaml < 4.05.0 -> ocaml-variants -> ocaml-beta unmet availability conditions: 'enable-ocaml-beta-repository' No solution found, exiting
Dry install without Coq/switch base, to test if the problem was incompatibility with the current Coq/OCaml version:
opam remove -y coq; opam install -y --show-action --unlock-base coq-mathcomp-odd-order.1.10.0
true
true
No files were installed.
true